TOPICS
Search

Search Results for ""


391 - 400 of 1777 for Well DefinedSearch Results
For a real number x, the mantissa is defined as the positive fractional part x-|_x_|=frac(x), where |_x_| denotes the floor function. For example, for x=3.14159, the mantissa ...
The winding number W(theta) of a map f(theta) with initial value theta is defined by W(theta)=lim_(n->infty)(f^n(theta)-theta)/n, which represents the average increase in the ...
Let R(x) be the revenue for a production x, C(x) the cost, and P(x) the profit. Then P(x)=R(x)-C(x), and the marginal profit for the x_0th unit is defined by ...
Denote the sum of two matrices A and B (of the same dimensions) by C=A+B. The sum is defined by adding entries with the same indices c_(ij)=a_(ij)+b_(ij) over all i and j. ...
A sequence defined from a finite sequence a_0, a_1, ..., a_n by defining a_(n+1)=max_(i)(a_i+a_(n-i)).
Let G=(V,E) be a (not necessarily simple) undirected edge-weighted graph with nonnegative weights. A cut C of G is any nontrivial subset of V, and the weight of the cut is ...
subjMathematics:Discrete Mathematics:Graph Theory:Cliques The maximal clique polynomial C_G(x) for the graph G may be defined as the polynomial ...
The maximal independence polynomial I_G(x) for the graph G may be defined as the polynomial I_G(x)=sum_(k=i(G))^(alpha(G))s_kx^k, where i(G) is the lower independence number, ...
The maximal irredundance polynomial R_G(x) for the graph G may be defined as the polynomial R_G(x)=sum_(k=ir(G))^(IR(G))r_kx^k, where ir(G) is the (lower) irredundance ...
The maximal matching-generating polynomial M_G(x) for the graph G may be defined as the polynomial M_G(x)=sum_(k=nu_L(G))^(nu(G))m_kx^k, where nu_L(G) is the lower matching ...
1 ... 37|38|39|40|41|42|43 ... 178 Previous Next

...