TOPICS
Search

Search Results for ""


9311 - 9320 of 13135 for Use of computers and internetSearch Results
Take the Helmholtz differential equation del ^2F+k^2F=0 (1) in spherical coordinates. This is just Laplace's equation in spherical coordinates with an additional term, (2) ...
A solution to the spherical Bessel differential equation. The two types of solutions are denoted j_n(x) (spherical Bessel function of the first kind) or n_n(x) (spherical ...
The spherical Bessel function of the second kind, denoted y_nu(z) or n_nu(z), is defined by y_nu(z)=sqrt(pi/(2z))Y_(nu+1/2)(z), (1) where Y_nu(z) is a Bessel function of the ...
The surface of revolution obtained by cutting a conical "wedge" with vertex at the center of a sphere out of the sphere. It is therefore a cone plus a spherical cap, and is a ...
Spherical coordinates, also called spherical polar coordinates (Walton 1967, Arfken 1985), are a system of curvilinear coordinates that are natural for describing positions ...
The spherical distance between two points P and Q on a sphere is the distance of the shortest path along the surface of the sphere (paths that cut through the interior of the ...
The study of figures on the surface of a sphere (such as the spherical triangle and spherical polygon), as opposed to the type of geometry studied in plane geometry or solid ...
The spherical Hankel function of the first kind h_n^((1))(z) is defined by h_n^((1))(z) = sqrt(pi/(2z))H_(n+1/2)^((1))(z) (1) = j_n(z)+in_n(z), (2) where H_n^((1))(z) is the ...
The spherical Hankel function of the second kind h_n^((1))(z) is defined by h_n^((2))(z) = sqrt(pi/(2x))H_(n+1/2)^((2))(z) (1) = j_n(z)-in_n(z), (2) where H_n^((2))(z) is the ...
A formula also known as the Legendre addition theorem which is derived by finding Green's functions for the spherical harmonic expansion and equating them to the generating ...
1 ... 929|930|931|932|933|934|935 ... 1314 Previous Next

...