TOPICS
Search

Search Results for ""


431 - 440 of 2142 for Trigonometry Angles Pi 17Search Results
An n-gonal cupola Q_n is a polyhedron having n obliquely oriented triangular and n rectangular faces separating an {n} and a {2n} regular polygon, each oriented horizontally. ...
A test for the convergence of Fourier series. Let phi_x(t)=f(x+t)+f(x-t)-2f(x), then if int_0^pi(|phi_x(t)|dt)/t is finite, the Fourier series converges to f(x) at x.
int_0^pi(sin[(n+1/2)x])/(2sin(1/2x))dx=1/2pi, where the integral kernel is the Dirichlet kernel.
The equations are x = 2/(sqrt(pi(4+pi)))(lambda-lambda_0)(1+costheta) (1) y = 2sqrt(pi/(4+pi))sintheta, (2) where theta is the solution to ...
The equations are x = ((lambda-lambda_0)(1+costheta))/(sqrt(2+pi)) (1) y = (2theta)/(sqrt(2+pi)), (2) where theta is the solution to theta+sintheta=(1+1/2pi)sinphi. (3) This ...
The primes with Legendre symbol (n/p)=1 (less than N=pi(d) for trial divisor d) which need be considered when using the quadratic sieve factorization method.
Let T_n(x) be an arbitrary trigonometric polynomial T_n(x)=1/2a_0+{sum_(k=1)^n[a_kcos(kx)+b_ksin(kx)]} (1) with real coefficients, let f be a function that is integrable over ...
Let Q(x) be a real or complex piecewise-continuous function defined for all values of the real variable x and that is periodic with minimum period pi so that Q(x+pi)=Q(x). ...
The name Lobachevsky's function is sometimes given to the function Lambda(theta)=1/2Cl_2(2theta), also denoted Pi(theta), where Cl_2(x) is Clausen's integral.
The log sine function, also called the logsine function, is defined by S_n=int_0^pi[ln(sinx)]^ndx. (1) The first few cases are given by S_1 = -piln2 (2) S_2 = ...
1 ... 41|42|43|44|45|46|47 ... 215 Previous Next

...