Search Results for ""
161 - 170 of 383 for Trigonometric and circularSearch Results

The exact values of cos(pi/18) and sin(pi/18) can be given by infinite nested radicals sin(pi/(18))=1/2sqrt(2-sqrt(2+sqrt(2+sqrt(2-...)))), where the sequence of signs +, +, ...
cos(pi/(24)) = 1/2sqrt(2+sqrt(2+sqrt(3))) (1) cos((5pi)/(24)) = 1/2sqrt(2+sqrt(2-sqrt(3))) (2) cos((7pi)/(24)) = 1/2sqrt(2-sqrt(2-sqrt(3))) (3) cos((11pi)/(24)) = ...
cos(pi/(30)) = 1/4sqrt(7+sqrt(5)+sqrt(6(5+sqrt(5)))) (1) cos((7pi)/(30)) = 1/4sqrt(7-sqrt(5)+sqrt(6(5-sqrt(5)))) (2) cos((11pi)/(30)) = 1/4sqrt(7+sqrt(5)-sqrt(6(5+sqrt(5)))) ...
cos(pi/(32)) = 1/2sqrt(2+sqrt(2+sqrt(2+sqrt(2)))) (1) cos((3pi)/(32)) = 1/2sqrt(2+sqrt(2+sqrt(2-sqrt(2)))) (2) cos((5pi)/(32)) = 1/2sqrt(2+sqrt(2-sqrt(2-sqrt(2)))) (3) ...
cos(pi/8) = 1/2sqrt(2+sqrt(2)) (1) cos((3pi)/8) = 1/2sqrt(2-sqrt(2)) (2) cot(pi/8) = 1+sqrt(2) (3) cot((3pi)/8) = sqrt(2)-1 (4) csc(pi/8) = sqrt(4+2sqrt(2)) (5) csc((3pi)/8) ...
int_0^(pi/2)cos^nxdx = int_0^(pi/2)sin^nxdx (1) = (sqrt(pi)Gamma(1/2(n+1)))/(nGamma(1/2n)) (2) = ((n-1)!!)/(n!!){1/2pi for n=2, 4, ...; 1 for n=3, 5, ..., (3) where Gamma(n) ...
The Gudermannian function is the odd function denoted either gamma(x) or gd(x) which arises in the inverse equations for the Mercator projection. phi(y)=gd(y) expresses the ...
For n a positive integer, expressions of the form sin(nx), cos(nx), and tan(nx) can be expressed in terms of sinx and cosx only using the Euler formula and binomial theorem. ...
The coversine is a little-used entire trigonometric function defined by covers(z) = versin(1/2pi-z) (1) = 1-sinz, (2) where versin(z) is the versine and sinz is the sine. The ...
The haversine, also called the haversed sine, is a little-used entire trigonometric function defined by hav(z) = 1/2vers(z) (1) = 1/2(1-cosz) (2) = sin^2(1/2z), (3) where ...

...