Search Results for ""
711 - 720 of 3308 for Totient FunctionSearch Results
Let p>3 be a prime number, then 4(x^p-y^p)/(x-y)=R^2(x,y)-(-1)^((p-1)/2)pS^2(x,y), where R(x,y) and S(x,y) are homogeneous polynomials in x and y with integer coefficients. ...
A primitive Pythagorean triple is a Pythagorean triple (a,b,c) such that GCD(a,b,c)=1, where GCD is the greatest common divisor. A right triangle whose side lengths give a ...
Let z=x+iy and f(z)=u(x,y)+iv(x,y) on some region G containing the point z_0. If f(z) satisfies the Cauchy-Riemann equations and has continuous first partial derivatives in ...
A modification of Legendre's formula for the prime counting function pi(x). It starts with |_x_| = (1) where |_x_| is the floor function, P_2(x,a) is the number of integers ...
Montgomery's pair correlation conjecture, published in 1973, asserts that the two-point correlation function R_2(r) for the zeros of the Riemann zeta function zeta(z) on the ...
A pair of numbers m and n such that sigma(m)=sigma(n)=m+n-1, where sigma(m) is the divisor function. Beck and Najar (1977) found 11 augmented amicable pairs.
The Chebyshev integral is given by intx^p(1-x)^qdx=B(x;1+p,1+q), where B(x;a,b) is an incomplete beta function.
f(x)=1/x-|_1/x_| for x in [0,1], where |_x_| is the floor function. The natural invariant of the map is rho(y)=1/((1+y)ln2).
sum_(k=-n)^n(-1)^k(n+b; n+k)(n+c; c+k)(b+c; b+k)=(Gamma(b+c+n+1))/(n!Gamma(b+1)Gamma(c+1)), where (n; k) is a binomial coefficient and Gamma(x) is a gamma function.
Legendre and Whittaker and Watson's (1990) term for the beta integral int_0^1x^p(1-x)^qdx, whose solution is the beta function B(p+1,q+1).
...