TOPICS
Search

Search Results for ""


4341 - 4350 of 13135 for TopologySearch Results
Let p be an odd prime, k be an integer such that pk and 1<=k<=2(p+1), and N=2kp+1. Then the following are equivalent 1. N is prime. 2. There exists an a such that ...
Let n-1=FR where F is the factored part of a number F=p_1^(a_1)...p_r^(a_r), (1) where (R,F)=1, and R<sqrt(n). Pocklington's theorem, also known as the Pocklington-Lehmer ...
The first and second Pöschl-Teller differential equations are given by y^('')-{a^2[(kappa(kappa-1))/(sin^2(ax))+(lambda(lambda-1))/(cos^2(ax))]-b^2}y=0 and ...
The system of partial differential equations u_(xx)-u_(yy)+/-sinucosu+(cosu)/(sin^3u)(v_x^2-v_y^2)=0 (v_xcot^2u)_x=(v_ycot^2u)_y.
Every Lie algebra L is isomorphic to a subalgebra of some Lie algebra A^-, where the associative algebra A may be taken to be the linear operators over a vector space V.
f(z)=k/((cz+d)^r)f((az+b)/(cz+d)) where I[z]>0.
The polyhedral formula generalized to a surface of genus g, V-E+F=chi(g) where V is the number of polyhedron vertices, E is the number of polyhedron edges, F is the number of ...
The Poincaré group is another name for the inhomogeneous Lorentz group (Weinberg 1972, p. 28) and corresponds to the group of inhomogeneous Lorentz transformations, also ...
Let {y^k} be a set of orthonormal vectors with k=1, 2, ..., K, such that the inner product (y^k,y^k)=1. Then set x=sum_(k=1)^Ku_ky^k (1) so that for any square matrix A for ...
"Poincaré transformation" is the name sometimes (e.g., Misner et al. 1973, p. 68) given to what other authors (e.g., Weinberg 1972, p. 26) term an inhomogeneous Lorentz ...
1 ... 432|433|434|435|436|437|438 ... 1314 Previous Next

...