TOPICS
Search

Search Results for ""


5961 - 5970 of 13134 for Theory of mindSearch Results
Special cases of general formulas due to Bessel. J_0(sqrt(z^2-y^2))=1/piint_0^pie^(ycostheta)cos(zsintheta)dtheta, where J_0(z) is a Bessel function of the first kind. Now, ...
The conjecture made by Belgian mathematician Eugène Charles Catalan in 1844 that 8 and 9 (2^3 and 3^2) are the only consecutive powers (excluding 0 and 1). In other words, ...
Consider a library which compiles a bibliographic catalog of all (and only those) catalogs which do not list themselves. Then does the library's catalog list itself?
The parametric equations for a catenary are x = t (1) y = acosh(t/a), (2) giving the evolute as x = t-a/2sinh((2t)/a) (3) y = 2acosh(t/(2a)). (4) For t>0, the evolute has arc ...
The parametric equations for a catenary are x = t (1) y = cosht, (2) giving the involute as x_i = t-tanht (3) y_i = secht. (4) The involute is therefore half of a tractrix.
The radial curve of the catenary x = t (1) y = cosht (2) with radiant point (x_0,y_0) is given by x_r = x_0-coshtsinht (3) y_r = y_0+cosht. (4)
The radius of convergence of the Taylor series a_0+a_1z+a_2z^2+... is r=1/(lim_(n->infty)^_(|a_n|)^(1/n)).
product_(k=1)^(n)(1+yq^k) = sum_(m=0)^(n)y^mq^(m(m+1)/2)[n; m]_q (1) = sum_(m=0)^(n)y^mq^(m(m+1)/2)((q)_n)/((q)_m(q)_(n-m)), (2) where [n; m]_q is a q-binomial coefficient.
If f(x,y) is an analytic function in a neighborhood of the point (x_0,y_0) (i.e., it can be expanded in a series of nonnegative integer powers of (x-x_0) and (y-y_0)), find a ...
For R[mu+nu]>1, int_(-pi/2)^(pi/2)cos^(mu+nu-2)thetae^(itheta(mu-nu+2xi))dtheta=(piGamma(mu+nu-1))/(2^(mu+nu-2)Gamma(mu+xi)Gamma(nu-xi)), where Gamma(z) is the gamma function.
1 ... 594|595|596|597|598|599|600 ... 1314 Previous Next

...