TOPICS
Search

Search Results for ""


861 - 870 of 1557 for SumSearch Results
The nth Monica set M_n is defined as the set of composite numbers x for which n|[S(x)-S_p(x)], where x = a_0+a_1(10^1)+...+a_d(10^d) (1) = p_1p_2...p_m, (2) and S(x) = ...
Let a set of random variates X_1, X_2, ..., X_n have a probability function P(X_1=x_1,...,X_n=x_n)=(N!)/(product_(i=1)^(n)x_i!)product_(i=1)^ntheta_i^(x_i) (1) where x_i are ...
The Nørlund polynomial (note that the spelling Nörlund also appears in various publications) is a name given by Carlitz (1960) and Adelberg (1997) to the polynomial ...
Let {y^k} be a set of orthonormal vectors with k=1, 2, ..., K, such that the inner product (y^k,y^k)=1. Then set x=sum_(k=1)^Ku_ky^k (1) so that for any square matrix A for ...
If a function f has a pole at z_0, then the negative power part sum_(j=-k)^(-1)a_j(z-z_0)^j (1) of the Laurent series of f about z_0 sum_(j=-k)^inftya_j(z-z_0)^j (2) is ...
Find two distinct sets of integers {a_1,...,a_n} and {b_1,...,b_n}, such that for k=1, ..., m, sum_(i=1)^na_i^k=sum_(i=1)^nb_i^k. (1) The Prouhet-Tarry-Escott problem is ...
Let phi(n) be any function, say analytic or integrable. Then int_0^inftyx^(s-1)sum_(k=0)^infty(-1)^kx^kphi(k)dx=(piphi(-s))/(sin(spi)) (1) and ...
Suppose that in some neighborhood of x=0, F(x)=sum_(k=0)^infty(phi(k)(-x)^k)/(k!) (1) for some function (say analytic or integrable) phi(k). Then ...
The Rayleigh functions sigma_n(nu) for n=1, 2, ..., are defined as sigma_n(nu)=sum_(k=1)^inftyj_(nu,k)^(-2n), where +/-j_(nu,k) are the zeros of the Bessel function of the ...
Closed forms are known for the sums of reciprocals of even-indexed Lucas numbers P_L^((e)) = sum_(n=1)^(infty)1/(L_(2n)) (1) = sum_(n=1)^(infty)1/(phi^(2n)+phi^(-2n)) (2) = ...
1 ... 84|85|86|87|88|89|90 ... 156 Previous Next

...