Search Results for ""
701 - 710 of 1557 for SumSearch Results

A^n+B^n=sum_(j=0)^(|_n/2_|)(-1)^jn/(n-j)(n-j; j)(AB)^j(A+B)^(n-2j), where |_x_| is the floor function and (n; k) is a binomial coefficient.
Let all of the functions f_n(z)=sum_(k=0)^inftya_k^((n))(z-z_0)^k (1) with n=0, 1, 2, ..., be regular at least for |z-z_0|<r, and let F(z) = sum_(n=0)^(infty)f_n(z) (2) = (3) ...
x^n=sum_(k=0)^n<n; k>(x+k; n), where <n; k> is an Eulerian number and (n; k) is a binomial coefficient (Worpitzky 1883; Comtet 1974, p. 242).
sum_(y=0)^m(-1)^(m-y)q^((m-y; 2))[m; y]_q(1-wq^m)/(q-wq^y) ×(1-wq^y)^m(-(1-z)/(1-wq^y);q)_y=(1-z)^mq^((m; 2)), where [n; y]_q is a q-binomial coefficient.
The Bombieri p-norm of a polynomial Q(x)=sum_(i=0)^na_ix^i (1) is defined by [Q]_p=[sum_(i=0)^n(n; i)^(1-p)|a_i|^p]^(1/p), (2) where (n; i) is a binomial coefficient. The ...
Let M(h) be the moment-generating function, then the cumulant generating function is given by K(h) = lnM(h) (1) = kappa_1h+1/(2!)h^2kappa_2+1/(3!)h^3kappa_3+..., (2) where ...
The expectation value of a function f(x) in a variable x is denoted <f(x)> or E{f(x)}. For a single discrete variable, it is defined by <f(x)>=sum_(x)f(x)P(x), (1) where P(x) ...
A system of linear differential equations (dy)/(dz)=A(z)y, (1) with A(z) an analytic n×n matrix, for which the matrix A(z) is analytic in C^_\{a_1,...,a_N} and has a pole of ...
Let {a_n} be a nonnegative sequence and f(x) a nonnegative integrable function. Define A_n=sum_(k=1)^na_k (1) and F(x)=int_0^xf(t)dt (2) and take p>1. For sums, ...
The harmonic parameter of a polyhedron is the weighted mean of the distances d_i from a fixed interior point to the faces, where the weights are the areas A_i of the faces, ...

...