Search Results for ""
641 - 650 of 4217 for Strong Lawof Small NumbersSearch Results
A number which is simultaneously a nonagonal number N_m and heptagonal number Hep_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=1/2n(5n-4). (1) Completing the ...
A number which is simultaneously a nonagonal number N_m and hexagonal number Hex_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=n(2n-1). (1) Completing the ...
A number which is simultaneously a nonagonal number N_m and octagonal number O_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=n(3n-2). (1) Completing the ...
A number which is simultaneously a nonagonal number N_m and pentagonal number P_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=1/2n(3n-1). (1) Completing the ...
A number which is simultaneously a nonagonal number N_m and a square number S_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=n^2. (1) Completing the square and ...
A number which is simultaneously a nonagonal number N_m and a triangular number T_n and therefore satisfies the Diophantine equation. 1/2m(7m-5)=1/2n(1+n). (1) Completing the ...
A figurate number constructed by taking the (3n-2)th tetrahedral number and removing the (n-1)th tetrahedral number from each of the four corners, Ttet_n = ...
A Woodall number is a number of the form W_n=2^nn-1. Woodall numbers are therefore similar to Mersenne numbers 2^n-1 but with an additional factor of n multiplying the power ...
Let n be a positive integer and r(n) the number of (not necessarily distinct) prime factors of n (with r(1)=0). Let O(m) be the number of positive integers <=m with an odd ...
A polygonal number of the form n(5n-3)/2. The first few are 1, 7, 18, 34, 55, 81, 112, ... (OEIS A000566). The generating function for the heptagonal numbers is ...
...
View search results from all Wolfram sites (41045 matches)

