Search Results for ""
6011 - 6020 of 13135 for Square Triangular NumberSearch Results

The use of coordinates (such as Cartesian coordinates) in the study of geometry. Cartesian geometry is named after René Descartes (Bell 1986, p. 48), although Descartes may ...
An operator Gamma=sum_(i=1)^me_i^Ru^(iR) on a representation R of a Lie algebra.
A map projection defined by x = sin^(-1)[cosphisin(lambda-lambda_0)] (1) y = tan^(-1)[(tanphi)/(cos(lambda-lambda_0))]. (2) The inverse formulas are phi = sin^(-1)(sinDcosx) ...
If P(x) is an irreducible cubic polynomial all of whose roots are real, then to obtain them by radicals, you must take roots of nonreal numbers at some point.
Special cases of general formulas due to Bessel. J_0(sqrt(z^2-y^2))=1/piint_0^pie^(ycostheta)cos(zsintheta)dtheta, where J_0(z) is a Bessel function of the first kind. Now, ...
Consider a library which compiles a bibliographic catalog of all (and only those) catalogs which do not list themselves. Then does the library's catalog list itself?
The parametric equations for a catenary are x = t (1) y = acosh(t/a), (2) giving the evolute as x = t-a/2sinh((2t)/a) (3) y = 2acosh(t/(2a)). (4) For t>0, the evolute has arc ...
The parametric equations for a catenary are x = t (1) y = cosht, (2) giving the involute as x_i = t-tanht (3) y_i = secht. (4) The involute is therefore half of a tractrix.
The radial curve of the catenary x = t (1) y = cosht (2) with radiant point (x_0,y_0) is given by x_r = x_0-coshtsinht (3) y_r = y_0+cosht. (4)
The radius of convergence of the Taylor series a_0+a_1z+a_2z^2+... is r=1/(lim_(n->infty)^_(|a_n|)^(1/n)).

...