Search Results for ""
401 - 410 of 2579 for Spherical Bessel Differential EquationSearch Results
![](/common/images/search/spacer.gif)
The Riemann-Siegel integral formula is the following representation of the xi-function xi(s) found in Riemann's Nachlass by Bessel-Hagen in 1926 (Siegel 1932; Edwards 2001, ...
The integral transform (Kf)(x)=int_0^inftysqrt(xt)K_nu(xt)f(t)dt, where K_nu(x) is a modified Bessel function of the second kind. Note the lower limit of 0, not -infty as ...
P(Z)=Z/(sigma^2)exp(-(Z^2+|V|^2)/(2sigma^2))I_0((Z|V|)/(sigma^2)), where I_0(z) is a modified Bessel function of the first kind and Z>0. For a derivation, see Papoulis ...
The hyperbolic sine is defined as sinhz=1/2(e^z-e^(-z)). (1) The notation shz is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix). It is implemented in the Wolfram ...
There are (at least) two equations known as Sommerfeld's formula. The first is J_nu(z)=1/(2pi)int_(-eta+iinfty)^(2pi-eta+iinfty)e^(izcost)e^(inu(t-pi/2))dt, where J_nu(z) is ...
A Fourier series-like expansion of a twice continuously differentiable function f(x)=1/2a_0+sum_(n=1)^inftya_nJ_0(nx) (1) for 0<x<pi, where J_0(x) is a zeroth order Bessel ...
The jinc function is defined as jinc(x)=(J_1(x))/x, (1) where J_1(x) is a Bessel function of the first kind, and satisfies lim_(x->0)jinc(x)=1/2. The derivative of the jinc ...
The Hankel transform (of order zero) is an integral transform equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel and also called the ...
The apodization function A(x)=(1-(x^2)/(a^2))^2. Its full width at half maximum is sqrt(4-2sqrt(2))a. Its instrument function is ...
Given a semicircular hump f(x) = sqrt(L^2-(x-L)^2) (1) = sqrt((2L-x)x), (2) the Fourier coefficients are a_0 = 1/2piL (3) a_n = ((-1)^nLJ_1(npi))/n (4) b_n = 0, (5) where ...
![](/common/images/search/spacer.gif)
...