Search Results for ""
1551 - 1560 of 2579 for Spherical Bessel Differential EquationSearch Results
Let r and s be positive integers which are relatively prime and let a and b be any two integers. Then there is an integer N such that N=a (mod r) (1) and N=b (mod s). (2) ...
The circumsphere of given set of points, commonly the vertices of a solid, is a sphere that passes through all the points. A circumsphere does not always exist, but when it ...
The conchoid of de Sluze is the cubic curve first constructed by René de Sluze in 1662. It is given by the implicit equation (x-1)(x^2+y^2)=ax^2, (1) or the polar equation ...
An equation of the form y=ax^3+bx^2+cx+d, (1) where the three roots of the equation coincide (and are therefore real), i.e., y=a(x-r)^3=a(x^3-3rx^2-3r^2x-r^3). (2) Loomis ...
A hexagon (not necessarily regular) on whose polygon vertices a circle may be circumscribed. Let sigma_i=Pi_i(a_1^2,a_2^2,a_3^2,a_4^2,a_5^2,a_6^2) (1) denote the ith-order ...
A pair of prime numbers (p,q) such that p^(q-1)=1 (mod q^2) and q^(p-1)=1 (mod p^2). The only known examples are (2, 1093), (3, 1006003), (5 , 1645333507), (83, 4871), (911, ...
The Dürer folium is a special case of the rose curve with n=1. It is therefore also an epitrochoid. It has polar equation r=asin(theta/2) (1) and can be written as a ...
The pedal curve of an epicycloid x = (a+b)cost-b[((a+b)t)/b] (1) y = (a+b)sint-bsin[((a+b)t)/b] (2) with pedal point at the origin is x_p = 1/2(a+2b){cost-cos[((a+b)t)/b]} ...
An equichordal point is a point p for which all the chords of a curve C passing through p are of the same length. In other words, p is an equichordal point if, for every ...
A conjecture due to Paul Erdős and E. G. Straus that the Diophantine equation 4/n=1/a+1/b+1/c involving Egyptian fractions always can be solved (Obláth 1950, Rosati 1954, ...
...