Search Results for ""
2141 - 2150 of 3276 for Special Unitary GroupSearch Results

A semiprime which English economist and logician William Stanley Jevons incorrectly believed no one else would be able to factor. According to Jevons (1874, p. 123), "Can the ...
The jinc function is defined as jinc(x)=(J_1(x))/x, (1) where J_1(x) is a Bessel function of the first kind, and satisfies lim_(x->0)jinc(x)=1/2. The derivative of the jinc ...
Jonquière's relation, sometimes also spelled "Joncquière's relation" (Erdélyi et al. 1981, p. 31), states ...
For positive integer n, the K-function is defined by K(n) = 1^12^23^3...(n-1)^(n-1) (1) = H(n-1), (2) where the numbers H(n)=K(n+1) are called hyperfactorials by Sloane and ...
Consider an n-digit number k. Square it and add the right n digits to the left n or n-1 digits. If the resultant sum is k, then k is called a Kaprekar number. For example, 9 ...
A Kapteyn series is a series of the form sum_(n=0)^inftyalpha_nJ_(nu+n)[(nu+n)z], (1) where J_n(z) is a Bessel function of the first kind. Examples include Kapteyn's original ...
A katadrome is a number whose hexadecimal digits are in strict descending order. The first few are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, 33, 48, 49, ... ...
Given a sequence S_i as input to stage i, form sequence S_(i+1) as follows: 1. For k in [1,...,i], write term i+k and then term i-k. 2. Discard the ith term. 3. Write the ...
The first few numbers whose abundance absolute values are odd squares (excluding the trivial cases of powers of 2) are 98, 2116, 4232, 49928, 80656, 140450, 550564, 729632, ...
Landau (1911) proved that for any fixed x>1, sum_(0<|I[rho]|<=T)x^rho=-T/(2pi)Lambda(x)+O(lnT) as T->infty, where the sum runs over the nontrivial Riemann zeta function zeros ...

...