Search Results for ""
10391 - 10400 of 13134 for Social choice theorySearch Results
A symmetry of a knot K is a homeomorphism of R^3 which maps K onto itself. More succinctly, a knot symmetry is a homeomorphism of the pair of spaces (R^3,K). Hoste et al. ...
Knuth's series is given by S = sum_(k=1)^(infty)((k^k)/(k!e^k)-1/(sqrt(2pik))) (1) = -2/3-1/(sqrt(2pi))zeta(1/2) (2) = -0.08406950872765599646... (3) (OEIS A096616), where ...
A fractal derived from the Koch snowflake. The base curve and motif for the fractal are illustrated below. The area enclosed by pieces of the curve after the nth iteration is ...
The function f_theta(z)=z/((1+e^(itheta)z)^2) (1) defined on the unit disk |z|<1. For theta in [0,2pi), the Köbe function is a schlicht function f(z)=z+sum_(j=2)^inftya_jz^j ...
If f is a schlicht function and D(z_0,r) is the open disk of radius r centered at z_0, then f(D(0,1)) superset= D(0,1/4), where superset= denotes a (not necessarily proper) ...
A tree with a finite number of branches at each fork and with a finite number of leaves at the end of each branch is called a finitely branching tree. König's lemma states ...
For every ring containing p spheres, there exists a ring of q spheres, each touching each of the p spheres, where 1/p+1/q=1/2, (1) which can also be written (p-2)(q-2)=4. (2) ...
Kontsevich's integral is a far-reaching generalization of the Gauss integral for the linking number, and provides a tool to construct the universal Vassiliev invariant of a ...
The point Ko of concurrence in Kosnita theorem, i.e., the point of concurrence of the lines connecting the vertices A, B, and C of a triangle DeltaABC with the circumcenters ...
The lines joining the vertices A, B, and C of a given triangle DeltaABC with the circumcenters of the triangles DeltaBCO, DeltaCAO, and DeltaABO (where O is the circumcenter ...
...
View search results from all Wolfram sites (55122 matches)

