Search Results for ""
1871 - 1880 of 2557 for Set UnionSearch Results
![](/common/images/search/spacer.gif)
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A lattice isomorphism is a one-to-one and onto lattice homomorphism.
Let L=(L, ^ , v ) be a lattice, and let f,g:L->L. Then the pair (f,g) is a polarity of L if and only if f is a decreasing join-endomorphism and g is an increasing ...
Lattice theory is the study of sets of objects known as lattices. It is an outgrowth of the study of Boolean algebras, and provides a framework for unifying the study of ...
Let L=(L, ^ , v ) be a lattice, and let tau subset= L^2. Then tau is a tolerance if and only if it is a reflexive and symmetric sublattice of L^2. Tolerances of lattices, ...
The Lebesgue covering dimension is an important dimension and one of the first dimensions investigated. It is defined in terms of covering sets, and is therefore also called ...
A lattice L is locally bounded if and only if each of its finitely generated sublattices is bounded. Every locally bounded lattice is locally subbounded, and every locally ...
Let L be a lattice (or a bounded lattice or a complemented lattice, etc.), and let C_L be the covering relation of L: C_L={(x,y) in L^2|x covers y or y covers x}. Then C_L is ...
A lattice L is locally subbounded if and only if each of its finite subsets is contained in a finitely generated bounded sublattice of L. Every locally bounded lattice is ...
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and is a meet-homomorphism, then h is a meet-embedding.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A meet-endomorphism of L is a meet-homomorphism from L to L.
![](/common/images/search/spacer.gif)
...