Search Results for ""
401 - 410 of 2717 for Sequences and seriesSearch Results

An n×n complex matrix A is called positive definite if R[x^*Ax]>0 (1) for all nonzero complex vectors x in C^n, where x^* denotes the conjugate transpose of the vector x. In ...
There are two problems commonly known as the subset sum problem. The first ("given sum problem") is the problem of finding what subset of a list of integers has a given sum, ...
The summatory function Phi(n) of the totient function phi(n) is defined by Phi(n) = sum_(k=1)^(n)phi(k) (1) = sum_(m=1)^(n)msum_(d|m)(mu(d))/d (2) = ...
A theorem which asserts that if a sequence or function behaves regularly, then some average of it behaves regularly. For example, A(x)∼x implies A_1(x)=int_0^xA(t)dt∼1/2x^2 ...
The nth order Bernstein expansion of a function f(x) in terms of a variable x is given by B_n(f,x)=sum_(j=0)^n(n; j)x^j(1-x)^(n-j)f(j/n), (1) (Gzyl and Palacios 1997, Mathé ...
The radius of convergence of the Taylor series a_0+a_1z+a_2z^2+... is r=1/(lim_(n->infty)^_(|a_n|)^(1/n)).
The series sumf(n) for a monotonic nonincreasing f(x) is convergent if lim_(x->infty)^_(e^xf(e^x))/(f(x))<1 and divergent if lim_(x->infty)__(e^xf(e^x))/(f(x))>1.
A function whose value decreases more quickly than any polynomial is said to be an exponentially decreasing function. The prototypical example is the function e^(-x), plotted ...
A function whose value increases more quickly than any polynomial is said to be an exponentially increasing function. The prototypical example is the function e^x, plotted ...
Given a hypergeometric series sum_(k)c_k, c_k is called a hypergeometric term (Koepf 1998, p. 12).

...