Search Results for ""
2091 - 2100 of 2717 for Sequences and seriesSearch Results
The first few numbers whose abundance absolute values are odd squares (excluding the trivial cases of powers of 2) are 98, 2116, 4232, 49928, 80656, 140450, 550564, 729632, ...
Every finite Abelian group can be written as a group direct product of cyclic groups of prime power group orders. In fact, the number of nonisomorphic Abelian finite groups ...
Let F be the set of complex analytic functions f defined on an open region containing the closure of the unit disk D={z:|z|<1} satisfying f(0)=0 and df/dz(0)=1. For each f in ...
The case of the Weierstrass elliptic function with invariants g_2=1 and g_3=0. In this case, the half-periods are given by (omega_1,omega_2)=(omega,iomega), where omega is ...
Levy (1963) noted that 13 = 3+(2×5) (1) 19 = 5+(2×7), (2) and from this observation, conjectured that all odd numbers >=7 are the sum of a prime plus twice a prime. This ...
For a real number x in (0,1), let m be the number of terms in the convergent to a regular continued fraction that are required to represent n decimal places of x. Then for ...
By analogy with the log sine function, define the log cosine function by C_n=int_0^(pi/2)[ln(cosx)]^ndx. (1) The first few cases are given by C_1 = -1/2piln2 (2) C_2 = ...
The Lucas numbers are the sequence of integers {L_n}_(n=1)^infty defined by the linear recurrence equation L_n=L_(n-1)+L_(n-2) (1) with L_1=1 and L_2=3. The nth Lucas number ...
The Lucas polynomials are the w-polynomials obtained by setting p(x)=x and q(x)=1 in the Lucas polynomial sequence. It is given explicitly by ...
When P and Q are integers such that D=P^2-4Q!=0, define the Lucas sequence {U_k} by U_k=(a^k-b^k)/(a-b) for k>=0, with a and b the two roots of x^2-Px+Q=0. Then define a ...
...