Search Results for ""
2041 - 2050 of 2717 for Sequences and seriesSearch Results
The sequence of numbers obtained by letting a_1=2, and defining a_n=lpf(1+product_(k=1)^(n-1)a_k) where lpf(n) is the least prime factor. The first few terms are 2, 3, 7, 43, ...
The triangle of numbers A_(n,k) given by A_(n,1)=A_(n,n)=1 (1) and the recurrence relation A_(n+1,k)=kA_(n,k)+(n+2-k)A_(n,k-1) (2) for k in [2,n], where A_(n,k) are shifted ...
An even number is an integer of the form n=2k, where k is an integer. The even numbers are therefore ..., -4, -2, 0, 2, 4, 6, 8, 10, ... (OEIS A005843). Since the even ...
The even part Ev(n) of a positive integer n is defined by Ev(n)=2^(b(n)), where b(n) is the exponent of the exact power of 2 dividing n. The values for n=1, 2, ..., are 1, 2, ...
An even permutation is a permutation obtainable from an even number of two-element swaps, i.e., a permutation with permutation symbol equal to +1. For initial set {1,2,3,4}, ...
The unique even prime number 2. All other primes are odd primes. Humorously, that means 2 is the "oddest" prime of all. The sequence 2, 4, 6, 10, 14, 22, 26, 34, 38, ... ...
Given the Lucas sequence U_n(b,-1) and V_n(b,-1), define Delta=b^2+4. Then an extra strong Lucas pseudoprime to the base b is a composite number n=2^rs+(Delta/n), where s is ...
A factorion is an integer which is equal to the sum of factorials of its digits. There are exactly four such numbers: 1 = 1! (1) 2 = 2! (2) 145 = 1!+4!+5! (3) 40585 = ...
Given a sequence of independent random variates X_1, X_2, ..., if sigma_k^2=var(X_k) and rho_n^2=max_(k<=n)((sigma_k^2)/(s_n^2)), then lim_(n->infty)rho_n^2=0. This means ...
The Feller-Tornier constant is the density of integers that have an even number of prime factors p_i^(a_i) with a_1>1 in their prime factorization. It is given by ...
...