Search Results for ""
1831 - 1840 of 2717 for Sequences and seriesSearch Results
By analogy with the divisor function sigma_1(n), let pi(n)=product_(d|n)d (1) denote the product of the divisors d of n (including n itself). For n=1, 2, ..., the first few ...
A double Mersenne number is a number of the form M_(M_n)=2^(2^n-1)-1, where M_n is a Mersenne number. The first few double Mersenne numbers are 1, 7, 127, 32767, 2147483647, ...
An edge-transitive graph is a graph such that any two edges are equivalent under some element of its automorphism group. More precisely, a graph is edge-transitive if for all ...
A beautiful approximation to the Euler-Mascheroni constant gamma is given by pi/(2e)=0.57786367... (1) (OEIS A086056; E. W. Weisstein, Apr. 18, 2006), which is good to three ...
The simple continued fraction of the Euler-Mascheroni constant gamma is [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, ...] (OEIS A002852). The first few ...
An Euler brick is a cuboid that possesses integer edges a>b>c and face diagonals d_(ab) = sqrt(a^2+b^2) (1) d_(ac) = sqrt(a^2+c^2) (2) d_(bc) = sqrt(b^2+c^2). (3) If the ...
The falling factorial (x)_n, sometimes also denoted x^(n__) (Graham et al. 1994, p. 48), is defined by (x)_n=x(x-1)...(x-(n-1)) (1) for n>=0. Is also known as the binomial ...
A Fermat pseudoprime to a base a, written psp(a), is a composite number n such that a^(n-1)=1 (mod n), i.e., it satisfies Fermat's little theorem. Sometimes the requirement ...
The free module of rank n over a nonzero unit ring R, usually denoted R^n, is the set of all sequences {a_1,a_2,...,a_n} that can be formed by picking n (not necessarily ...
Define the abundancy Sigma(n) of a positive integer n as Sigma(n)=(sigma(n))/n, (1) where sigma(n) is the divisor function. Then a pair of distinct numbers (k,m) is a ...
...