Search Results for ""
151 - 160 of 2717 for Sequences and seriesSearch Results

The "imaginary error function" erfi(z) is an entire function defined by erfi(z)=-ierf(iz), (1) where erf(z) is the erf function. It is implemented in the Wolfram Language as ...
The hyperfactorial (Sloane and Plouffe 1995) is the function defined by H(n) = K(n+1) (1) = product_(k=1)^(n)k^k, (2) where K(n) is the K-function. The hyperfactorial is ...
The Farey sequence F_n for any positive integer n is the set of irreducible rational numbers a/b with 0<=a<=b<=n and (a,b)=1 arranged in increasing order. The first few are ...
product_(k=1)^(infty)(1-x^k) = sum_(k=-infty)^(infty)(-1)^kx^(k(3k+1)/2) (1) = 1+sum_(k=1)^(infty)(-1)^k[x^(k(3k-1)/2)+x^(k(3k+1)/2)] (2) = (x)_infty (3) = ...
The Dedekind eta function is defined over the upper half-plane H={tau:I[tau]>0} by eta(tau) = q^_^(1/24)(q^_)_infty (1) = q^_^(1/24)product_(k=1)^(infty)(1-q^_^k) (2) = ...
Kepler's equation gives the relation between the polar coordinates of a celestial body (such as a planet) and the time elapsed from a given initial point. Kepler's equation ...
Consider the recurrence equation defined by a_0=m and a_n=|_sqrt(2a_(n-1)(a_(n-1)+1))_|, (1) where |_x_| is the floor function. Graham and Pollak actually defined a_1=m, but ...
A sequence s_n(x) is called a Sheffer sequence iff its generating function has the form sum_(k=0)^infty(s_k(x))/(k!)t^k=A(t)e^(xB(t)), (1) where A(t) = A_0+A_1t+A_2t^2+... ...
Schur's partition theorem lets A(n) denote the number of partitions of n into parts congruent to +/-1 (mod 6), B(n) denote the number of partitions of n into distinct parts ...
The Thue-Morse sequence, also called the Morse-Thue sequence or Prouhet-Thue-Morse sequence (Allouche and Cosnard 2000), is one of a number of related sequences of numbers ...

...