Search Results for ""
5411 - 5420 of 13135 for STATISTICSSearch Results
Wagner's theorem states that a graph is planar iff it does not contain K_5 or K_(3,3) as a graph minor.
A modification of the Eberhart's conjecture proposed by Wagstaff (1983) which proposes that if q_n is the nth prime such that M_(q_n) is a Mersenne prime, then ...
int_0^(pi/2)cos^nxdx = int_0^(pi/2)sin^nxdx (1) = (sqrt(pi)Gamma(1/2(n+1)))/(nGamma(1/2n)) (2) = ((n-1)!!)/(n!!){1/2pi for n=2, 4, ...; 1 for n=3, 5, ..., (3) where Gamma(n) ...
A compact set W_infty with area mu(W_infty)=8/9(24)/(25)(48)/(49)...=pi/4 created by punching a square hole of length 1/3 in the center of a square. In each of the eight ...
The right conoid surface given by the parametric equations x(u,v) = vcosu (1) y(u,v) = vsinu (2) z(u,v) = csqrt(a^2-b^2cos^2u). (3)
The ordinary differential equation y^('')+1/2[1/(x-a_1)+1/(x-a_2)+1/(x-a_3)]y^' +1/4[(A_0+A_1x+A_2x^2)/((x-a_1)(x-a_2)(x-a_3))]y=0.
Let N be an odd integer, and assume there exists a Lucas sequence {U_n} with associated Sylvester cyclotomic numbers {Q_n} such that there is an n>sqrt(N) (with n and N ...
Every odd integer n is a prime or the sum of three primes. This problem is closely related to Vinogradov's theorem.
If each of two curves meets the line at infinity in distinct, nonsingular points, and if all their intersections are finite, then if to each common point there is attached a ...
Let H_nu^((iota))(x) be a Hankel function of the first or second kind, let x,nu>0, and define w=sqrt((x/nu)^2-1). Then ...
...
View search results from all Wolfram sites (192556 matches)

