Search Results for ""
2431 - 2440 of 13135 for STATISTICSSearch Results
Exponential decay is the decrease in a quantity N according to the law N(t)=N_0e^(-lambdat) (1) for a parameter t and constant lambda (known as the decay constant), where e^x ...
An exponential generating function for the integer sequence a_0, a_1, ... is a function E(x) such that E(x) = sum_(k=0)^(infty)a_k(x^k)/(k!) (1) = ...
The curve y=1-e^(ax), illustrated above.
sum_(n=0)^(N-1)e^(inx) = (1-e^(iNx))/(1-e^(ix)) (1) = (-e^(iNx/2)(e^(-iNx/2)-e^(iNx/2)))/(-e^(ix/2)(e^(-ix/2)-e^(ix/2))) (2) = (sin(1/2Nx))/(sin(1/2x))e^(ix(N-1)/2), (3) ...
The exponential sum function e_n(x), sometimes also denoted exp_n(x), is defined by e_n(x) = sum_(k=0)^(n)(x^k)/(k!) (1) = (e^xGamma(n+1,x))/(Gamma(n+1)), (2) where ...
A function whose value decreases more quickly than any polynomial is said to be an exponentially decreasing function. The prototypical example is the function e^(-x), plotted ...
A function whose value increases more quickly than any polynomial is said to be an exponentially increasing function. The prototypical example is the function e^x, plotted ...
Exponentiation is the process of taking a quantity b (the base) to the power of another quantity e (the exponent). This operation most commonly denoted b^e. In TeX, the ...
The exsecant is a little-used trigonometric function defined by exsec(x)=secx-1, (1) where secx is the secant. The exsecant can be extended to the complex plane as ...
A binary tree in which special nodes are added wherever a null subtree was present in the original tree so that each node in the original tree (except the root node) has ...
...
View search results from all Wolfram sites (192556 matches)

