Search Results for ""
1691 - 1700 of 13135 for STATISTICSSearch Results
The parametric equations for a catenary are x = t (1) y = cosht, (2) giving the involute as x_i = t-tanht (3) y_i = secht. (4) The involute is therefore half of a tractrix.
The radial curve of the catenary x = t (1) y = cosht (2) with radiant point (x_0,y_0) is given by x_r = x_0-coshtsinht (3) y_r = y_0+cosht. (4)
Let t be a nonnegative integer and let x_1, ..., x_t be nonzero elements of Z_p which are not necessarily distinct. Then the number of elements of Z_p that can be written as ...
The radius of convergence of the Taylor series a_0+a_1z+a_2z^2+... is r=1/(lim_(n->infty)^_(|a_n|)^(1/n)).
product_(k=1)^(n)(1+yq^k) = sum_(m=0)^(n)y^mq^(m(m+1)/2)[n; m]_q (1) = sum_(m=0)^(n)y^mq^(m(m+1)/2)((q)_n)/((q)_m(q)_(n-m)), (2) where [n; m]_q is a q-binomial coefficient.
If f(x,y) is an analytic function in a neighborhood of the point (x_0,y_0) (i.e., it can be expanded in a series of nonnegative integer powers of (x-x_0) and (y-y_0)), find a ...
The Cauchy product of two sequences f(n) and g(n) defined for nonnegative integers n is defined by (f degreesg)(n)=sum_(k=0)^nf(k)g(n-k).
A sequence a_1, a_2, ... such that the metric d(a_m,a_n) satisfies lim_(min(m,n)->infty)d(a_m,a_n)=0. Cauchy sequences in the rationals do not necessarily converge, but they ...
For R[mu+nu]>1, int_(-pi/2)^(pi/2)cos^(mu+nu-2)thetae^(itheta(mu-nu+2xi))dtheta=(piGamma(mu+nu-1))/(2^(mu+nu-2)Gamma(mu+xi)Gamma(nu-xi)), where Gamma(z) is the gamma function.
Any row r and column s of a determinant being selected, if the element common to them be multiplied by its cofactor in the determinant, and every product of another element ...
...
View search results from all Wolfram sites (192556 matches)

