Search Results for ""
551 - 560 of 13134 for SPECIAL TOPICSSearch Results
A class of curve defined at integer values which hops from one value to another. Their name derives from the Greek word betaalphataurhoalphachiiotaomicronnu batrachion, which ...
In April 1999, Ed Pegg conjectured on sci.math that there were only finitely many zerofree cubes, to which D. Hickerson responded with a counterexample. A few days later, Lew ...
The bei_nu(z) function is defined through the equation J_nu(ze^(3pii/4))=ber_nu(z)+ibei_nu(z), (1) where J_nu(z) is a Bessel function of the first kind, so ...
The function ber_nu(z) is defined through the equation J_nu(ze^(3pii/4))=ber_nu(z)+ibei_nu(z), (1) where J_nu(z) is a Bessel function of the first kind, so ...
Polynomials b_n(x) which form a Sheffer sequence with g(t) = t/(e^t-1) (1) f(t) = e^t-1, (2) giving generating function sum_(k=0)^infty(b_k(x))/(k!)t^k=(t(t+1)^x)/(ln(1+t)). ...
Krall and Fink (1949) defined the Bessel polynomials as the function y_n(x) = sum_(k=0)^(n)((n+k)!)/((n-k)!k!)(x/2)^k (1) = sqrt(2/(pix))e^(1/x)K_(-n-1/2)(1/x), (2) where ...
The integral int_0^1x^p(1-x)^qdx, called the Eulerian integral of the first kind by Legendre and Whittaker and Watson (1990). The solution is the beta function B(p+1,q+1).
Polynomials s_k(x;lambda) which form a Sheffer sequence with g(t) = 1+e^(lambdat) (1) f(t) = e^t-1 (2) and have generating function ...
One of the polynomials obtained by taking powers of the Brahmagupta matrix. They satisfy the recurrence relation x_(n+1) = xx_n+tyy_n (1) y_(n+1) = xy_n+yx_n. (2) A list of ...
The fractal-like two-dimensional function f(x,y)=((x^2-y^2)sin((x+y)/a))/(x^2+y^2). The function is named for the appearance of a butterfly-like pattern centered around the ...
...
View search results from all Wolfram sites (52311 matches)

