TOPICS
Search

Search Results for ""


481 - 490 of 13134 for SPECIAL TOPICSSearch Results
The w-polynomials obtained by setting p(x)=3x and q(x)=-2 in the Lucas polynomial sequence. Setting f_n(1)=f_n (1) give a Fermat-Lucas number. The first few Fermat-Lucas ...
The W-polynomials obtained by setting p(x)=3x and q(x)=-2 in the Lucas polynomial sequence. The first few Fermat polynomials are F_1(x) = 1 (1) F_2(x) = 3x (2) F_3(x) = ...
A function S_n(z) which satisfies the recurrence relation S_(n-1)(z)-S_(n+1)(z)=2S_n^'(z) together with S_1(z)=-S_0^'(z) is called a hemicylindrical function.
Q_n^((alpha,beta))(x)=2^(-n-1)(x-1)^(-alpha)(x+1)^(-beta) ×int_(-1)^1(1-t)^(n+alpha)(1+t)^(n+beta)(x-t)^(-n-1)dt. In the exceptional case n=0, alpha+beta+1=0, a nonconstant ...
The Jacobsthal polynomials are the w-polynomials obtained by setting p(x)=1 and q(x)=2x in the Lucas polynomial sequence. The first few Jacobsthal-Lucas polynomials are ...
If f_1,...,f_m:R^n->R are exponential polynomials, then {x in R^n:f_1(x)=...f_n(x)=0} has finitely many connected components.
The two integrals involving Bessel functions of the first kind given by (alpha^2-beta^2)intxJ_n(alphax)J_n(betax)dx ...
Polynomials s_n(x) which form the Sheffer sequence for f^(-1)(t)=1+t-e^t, (1) where f^(-1)(t) is the inverse function of f(t), and have generating function ...
A Meeussen sequence is an increasing sequence of positive integers (m_1, m_2, ...) such that m_1=1, every nonnegative integer is the sum of a subset of the {m_i}, and each ...
P_n(cosalpha)=(sqrt(2))/piint_0^alpha(cos[(n+1/2)phi])/(sqrt(cosphi-cosalpha))dphi, where P_n(x) is a Legendre polynomial.
1 ... 46|47|48|49|50|51|52 ... 1314 Previous Next

...