TOPICS
Search

Search Results for ""


1581 - 1590 of 13134 for SPECIAL TOPICSSearch Results
A digit sum s_b(n) is a sum of the base-b digits of n, which can be implemented in the Wolfram Language as DigitSum[n_, b_:10] := Total[IntegerDigits[n, b]]The following ...
In general, an integer n is divisible by d iff the digit sum s_(d+1)(n) is divisible by d. Write a positive decimal integer a out digit by digit in the form ...
When the elliptic modulus k has a singular value, the complete elliptic integrals may be computed in analytic form in terms of gamma functions. Abel (quoted in Whittaker and ...
erf(z) is the "error function" encountered in integrating the normal distribution (which is a normalized form of the Gaussian function). It is an entire function defined by ...
In response to a letter from Goldbach, Euler considered sums of the form s_h(m,n) = sum_(k=1)^(infty)(1+1/2+...+1/k)^m(k+1)^(-n) (1) = ...
The Eulerian number <n; k> gives the number of permutations of {1,2,...,n} having k permutation ascents (Graham et al. 1994, p. 267). Note that a slightly different ...
The hyperbolic functions sinhz, coshz, tanhz, cschz, sechz, cothz (hyperbolic sine, hyperbolic cosine, hyperbolic tangent, hyperbolic cosecant, hyperbolic secant, and ...
The inverse sine is the multivalued function sin^(-1)z (Zwillinger 1995, p. 465), also denoted arcsinz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; ...
The Jacobi triple product is the beautiful identity product_(n=1)^infty(1-x^(2n))(1+x^(2n-1)z^2)(1+(x^(2n-1))/(z^2))=sum_(m=-infty)^inftyx^(m^2)z^(2m). (1) In terms of the ...
The logarithmic integral (in the "American" convention; Abramowitz and Stegun 1972; Edwards 2001, p. 26), is defined for real x as li(x) = {int_0^x(dt)/(lnt) for 0<x<1; ...
1 ... 156|157|158|159|160|161|162 ... 1314 Previous Next

...