Search Results for ""
1091 - 1100 of 13134 for SPECIAL TOPICSSearch Results
The triangle of numbers A_(n,k) given by A_(n,1)=A_(n,n)=1 (1) and the recurrence relation A_(n+1,k)=kA_(n,k)+(n+2-k)A_(n,k-1) (2) for k in [2,n], where A_(n,k) are shifted ...
The numbers 2^npq and 2^nr are an amicable pair if the three integers p = 2^m(2^(n-m)+1)-1 (1) q = 2^n(2^(n-m)+1)-1 (2) r = 2^(n+m)(2^(n-m)+1)^2-1 (3) are all prime numbers ...
An exact sequence is a sequence of maps alpha_i:A_i->A_(i+1) (1) between a sequence of spaces A_i, which satisfies Im(alpha_i)=Ker(alpha_(i+1)), (2) where Im denotes the ...
Exponential growth is the increase in a quantity N according to the law N(t)=N_0e^(lambdat) (1) for a parameter t and constant lambda (the analog of the decay constant), ...
The triangle T that is externally tangent to the excircles and forms their triangular hull is called the extangents triangle (Kimberling 1998, p. 162). It is homothetic to ...
The extouch triangle DeltaT_1T_2T_3 is the triangle formed by the points of tangency of a triangle DeltaA_1A_2A_3 with its excircles J_1, J_2, and J_3. The points T_1, T_2, ...
Given the Lucas sequence U_n(b,-1) and V_n(b,-1), define Delta=b^2+4. Then an extra strong Lucas pseudoprime to the base b is a composite number n=2^rs+(Delta/n), where s is ...
In 1657, Fermat posed the problem of finding solutions to sigma(x^3)=y^2, and solutions to sigma(x^2)=y^3, where sigma(n) is the divisor function (Dickson 2005). The first ...
The Feuerbach triangle is the triangle formed by the three points of tangency of the nine-point circle with the excircles (Kimberling 1998, p. 158). (The fact that the ...
The Fibonacci factorial constant is the constant appearing in the asymptotic growth of the fibonorials (aka. Fibonacci factorials) n!_F. It is given by the infinite product ...
...
View search results from all Wolfram sites (52311 matches)

