Search Results for ""
281 - 290 of 384 for Reflexive RelationSearch Results
A plot of the map winding number W resulting from mode locking as a function of Omega for the circle map theta_(n+1)=theta_n+Omega-K/(2pi)sin(2pitheta_n) (1) with K=1. (Since ...
The number N_d^((b))(n) of digits d in the base-b representation of a number n is called the b-ary digit count for d. The digit count is implemented in the Wolfram Language ...
A set of m distinct positive integers S={a_1,...,a_m} satisfies the Diophantus property D(n) of order n (a positive integer) if, for all i,j=1, ..., m with i!=j, ...
The continuous Fourier transform is defined as f(nu) = F_t[f(t)](nu) (1) = int_(-infty)^inftyf(t)e^(-2piinut)dt. (2) Now consider generalization to the case of a discrete ...
Discrete mathematics is the branch of mathematics dealing with objects that can assume only distinct, separated values. The term "discrete mathematics" is therefore used in ...
Let the elliptic modulus k satisfy 0<k^2<1, and the Jacobi amplitude be given by phi=amu with -pi/2<phi<pi/2. The incomplete elliptic integral of the first kind is then ...
If A=>B and B=>A (i.e., A=>B ^ B=>A, where => denotes implies), then A and B are said to be equivalent, a relationship which is written symbolically in this work as A=B. The ...
The falling factorial (x)_n, sometimes also denoted x^(n__) (Graham et al. 1994, p. 48), is defined by (x)_n=x(x-1)...(x-(n-1)) (1) for n>=0. Is also known as the binomial ...
If x_0 is an ordinary point of the ordinary differential equation, expand y in a Taylor series about x_0. Commonly, the expansion point can be taken as x_0=0, resulting in ...
Given a function f(x_1,...,x_n) defined on a domain U, the graph of f is defined as the set of points (which often form a curve or surface) showing the values taken by f over ...
...
View search results from all Wolfram sites (22000 matches)

