Search Results for ""
391 - 400 of 3389 for Rectangle FunctionSearch Results
![](/common/images/search/spacer.gif)
The Fourier transform of the delta function is given by F_x[delta(x-x_0)](k) = int_(-infty)^inftydelta(x-x_0)e^(-2piikx)dx (1) = e^(-2piikx_0). (2)
F_x[1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2)](k)=e^(-2piikx_0-Gammapi|k|). This transform arises in the computation of the characteristic function of the Cauchy distribution.
Multivariate zeta function, also called multiple zeta values, multivariate zeta constants (Bailey et al. 2006, p. 43), multi-zeta values (Bailey et al. 2006, p. 17), and ...
Inverse function integration is an indefinite integration technique. While simple, it is an interesting application of integration by parts. If f and f^(-1) are inverses of ...
When the index nu is real, the functions J_nu(z), J_nu^'(z), Y_nu(z), and Y_nu^'(z) each have an infinite number of real zeros, all of which are simple with the possible ...
The function defined by chi_nu(z)=sum_(k=0)^infty(z^(2k+1))/((2k+1)^nu). (1) It is related to the polylogarithm by chi_nu(z) = 1/2[Li_nu(z)-Li_nu(-z)] (2) = ...
If a function phi is harmonic in a sphere, then the value of phi at the center of the sphere is the arithmetic mean of its value on the surface.
The fraction of odd values of the partition function P(n) is roughly 50%, independent of n, whereas odd values of Q(n) occur with ever decreasing frequency as n becomes ...
The spherical Bessel function of the first kind, denoted j_nu(z), is defined by j_nu(z)=sqrt(pi/(2z))J_(nu+1/2)(z), (1) where J_nu(z) is a Bessel function of the first kind ...
A multiplicative number theoretic function is a number theoretic function f that has the property f(mn)=f(m)f(n) (1) for all pairs of relatively prime positive integers m and ...
![](/common/images/search/spacer.gif)
...