TOPICS
Search

Search Results for ""


151 - 160 of 310 for Rankine-Hugoniot conditionsSearch Results
Let L be a lattice (or a bounded lattice or a complemented lattice, etc.), and let C_L be the covering relation of L: C_L={(x,y) in L^2|x covers y or y covers x}. Then C_L is ...
A lattice L is locally subbounded if and only if each of its finite subsets is contained in a finitely generated bounded sublattice of L. Every locally bounded lattice is ...
Let x=(x_1,x_2,...,x_n) and y=(y_1,y_2,...,y_n) be nonincreasing sequences of real numbers. Then x majorizes y if, for each k=1, 2, ..., n, sum_(i=1)^kx_i>=sum_(i=1)^ky_i, ...
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and is a meet-homomorphism, then h is a meet-embedding.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A meet-endomorphism of L is a meet-homomorphism from L to L.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. Then the mapping h is a meet-homomorphism if h(x ^ y)=h(x) ^ h(y). It is also said that "h preserves meets."
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and onto, then it is a meet-isomorphism provided that it preserves meets.
The Minkowski metric, also called the Minkowski tensor or pseudo-Riemannian metric, is a tensor eta_(alphabeta) whose elements are defined by the matrix (eta)_(alphabeta)=[-1 ...
Let any finite or infinite set of points having no finite limit point be prescribed and associate with each of its points a principal part, i.e., a rational function of the ...
A monotonic matrix of order n is an n×n matrix in which every element is either 0 or contains a number from the set {1,...,n} subject to the conditions 1. The filled-in ...
1 ... 13|14|15|16|17|18|19 ... 31 Previous Next

...