Search Results for ""
1021 - 1030 of 2098 for Prime FormulasSearch Results
![](/common/images/search/spacer.gif)
If f^'(x) is continuous and the integral converges, int_0^infty(f(ax)-f(bx))/xdx=[f(0)-f(infty)]ln(b/a).
f(x) approx t_n(x)=sum_(k=0)^(2n)f_kzeta_k(x), where t_n(x) is a trigonometric polynomial of degree n such that t_n(x_k)=f_k for k=0, ..., 2n, and ...
The inverse cotangent is the multivalued function cot^(-1)z (Zwillinger 1995, p. 465), also denoted arccotz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. ...
Let sum_(k=0)^(infty)a_k=a and sum_(k=0)^(infty)c_k=c be convergent series such that lim_(k->infty)(a_k)/(c_k)=lambda!=0. Then ...
If xsinalpha=sin(2beta-alpha), then (1+x)int_0^alpha(dphi)/(sqrt(1-x^2sin^2phi))=2int_0^beta(dphi)/(sqrt(1-(4x)/((1+x)^2)sin^2phi)).
A discrete distribution of a random variable such that every possible value can be represented in the form a+bn, where a,b!=0 and n is an integer.
A generalization of the product rule for expressing arbitrary-order derivatives of products of functions, where (n; k) is a binomial coefficient. This can also be written ...
If f(x) is positive and decreases to 0, then an Euler constant gamma_f=lim_(n->infty)[sum_(k=1)^nf(k)-int_1^nf(x)dx] can be defined. For example, if f(x)=1/x, then ...
The integral representation of ln[Gamma(z)] by lnGamma(z) = int_1^zpsi_0(z^')dz^' (1) = int_0^infty[(z-1)-(1-e^(-(z-1)t))/(1-e^(-t))](e^(-t))/tdt, (2) where lnGamma(z) is the ...
Given a elliptic modulus k in an elliptic integral, the modular angle alpha is defined by k=sinalpha. An elliptic integral is written I(phi|m) when the parameter m is used, ...
![](/common/images/search/spacer.gif)
...