Search Results for ""
981 - 990 of 1981 for Power SumSearch Results

The paper folding constant is the constant given by P = sum_(k=0)^(infty)1/(2^(2^k))(1-1/(2^(2^(k+2))))^(-1) (1) = sum_(k=0)^(infty)(8^(2^k))/(2^(2^(k+2))-1) (2) = ...
The Poisson-Charlier polynomials c_k(x;a) form a Sheffer sequence with g(t) = e^(a(e^t-1)) (1) f(t) = a(e^t-1), (2) giving the generating function ...
The positions of the geometric centroid of a planar non-self-intersecting polygon with vertices (x_1,y_1), ..., (x_n,y_n) are x^_ = ...
A sequence {mu_n}_(n=0)^infty is positive definite if the moment of every nonnegative polynomial which is not identically zero is greater than zero (Widder 1941, p. 132). ...
An integer N which is a product of distinct primes and which satisfies 1/N+sum_(p|N)1/p=1 (Butske et al. 1999). The first few are 2, 6, 42, 1806, 47058, ... (OEIS A054377). ...
Define f(x_1,x_2,...,x_n) with x_i positive as f(x_1,x_2,...,x_n)=sum_(i=1)^nx_i+sum_(1<=i<=k<=n)product_(j=i)^k1/(x_j). (1) Then minf=3n-C+o(1) (2) as n increases, where the ...
Let K and L be simplicial complexes, and let f:K^((0))->L^((0)) be a map. Suppose that whenever the vertices v_0, ..., v_n of K span a simplex of K, the points f(v_0), ..., ...
Summation by parts for discrete variables is the equivalent of integration by parts for continuous variables Delta^(-1)[v(x)Deltau(x)]=u(x)v(x)-Delta^(-1)[Eu(x)Deltav(x)], ...
Let T(x,y,z) be the number of times "otherwise" is called in the TAK function, then the Takeuchi numbers are defined by T_n(n,0,n+1). A recursive formula for T_n is given by ...
Let H be a Hilbert space and (e_i)_(i in I) an orthonormal basis for H. The set of all products of two Hilbert-Schmidt operators is denoted N(H), and its elements are called ...

...