Search Results for ""
881 - 890 of 1981 for Power SumSearch Results
If, in an interval of x, sum_(r=1)^(n)a_r(x) is uniformly bounded with respect to n and x, and {v_r} is a sequence of positive non-increasing quantities tending to zero, then ...
Let |sum_(n=1)^pa_n|<K, (1) where K is independent of p. Then if f_n>=f_(n+1)>0 and lim_(n->infty)f_n=0, (2) it follows that sum_(n=1)^inftya_nf_n (3) converges.
The Eberlein polynomials of degree 2k and variable x are the orthogonal polynomials arising in the Johnson scheme that may be defined by E_k^((n,v))(x) = ...
A generalized hypergeometric function _pF_q[alpha_1,alpha_2,...,alpha_p; beta_1,beta_2,...,beta_q;z], is said to be Saalschützian if it is k-balanced with k=1, ...
Given a positive sequence {a_n}, sqrt(sum_(j=-infty)^infty|sum_(n=-infty; n!=j)^infty(a_n)/(j-n)|^2)<=pisqrt(sum_(n=-infty)^infty|a_n|^2), (1) where the a_ns are real and ...
A Lambert series is a series of the form F(x)=sum_(n=1)^inftya_n(x^n)/(1-x^n) (1) for |x|<1. Then F(x) = sum_(n=1)^(infty)a_nsum_(m=1)^(infty)x^(mn) (2) = ...
Let A=a_(ij) be an n×n matrix with complex (or real) entries and eigenvalues lambda_1, lambda_2, ..., lambda_n, then sum_(i=1)^n|lambda_i|^2<=sum_(i,j=1)^n|a_(ij)|^2 (1) ...
A series involving three sums. Examples of convergent triple series include sum_(i=1)^(infty)sum_(j=1)^(infty)sum_(k=1)^(infty)1/((ijk)^2) = 1/(216)pi^6 (1) ...
An l_x table is a tabulation of numbers which is used to calculate life expectancies. x n_x d_x l_x q_x L_x T_x e_x 0 1000 200 1.00 0.20 0.90 2.70 2.70 1 800 100 0.80 0.12 ...
A series is an infinite ordered set of terms combined together by the addition operator. The term "infinite series" is sometimes used to emphasize the fact that series ...
...
View search results from all Wolfram sites (331565 matches)

