TOPICS
Search

Search Results for ""


1121 - 1130 of 1981 for Power SumSearch Results
An approximation for the gamma function Gamma(z+1) with R[z]>0 is given by Gamma(z+1)=sqrt(2pi)(z+sigma+1/2)^(z+1/2)e^(-(z+sigma+1/2))sum_(k=0)^inftyg_kH_k(z), (1) where ...
The spherical harmonics form a complete orthogonal system, so an arbitrary real function f(theta,phi) can be expanded in terms of complex spherical harmonics by ...
If f(z) is analytic throughout the annular region between and on the concentric circles K_1 and K_2 centered at z=a and of radii r_1 and r_2<r_1 respectively, then there ...
The Lerch transcendent is generalization of the Hurwitz zeta function and polylogarithm function. Many sums of reciprocal powers can be expressed in terms of it. It is ...
The Lyapunov condition, sometimes known as Lyapunov's central limit theorem, states that if the (2+epsilon)th moment (with epsilon>0) exists for a statistical distribution of ...
Let E be a compact connected subset of d-dimensional Euclidean space. Gross (1964) and Stadje (1981) proved that there is a unique real number a(E) such that for all x_1, ...
The Mercator series, also called the Newton-Mercator series (Havil 2003, p. 33), is the Taylor series for the natural logarithm ln(1+x) = sum_(k=1)^(infty)((-1)^(k+1))/kx^k ...
Let A_n be the set of all sequences that contain all sequences {a_k}_(k=0)^n where a_0=1 and all other a_i=+/-1, and define c_k=sum_(j=0)^(n-k)a_ja_(j+k). Then the merit ...
Polynomials M_k(x) which form the associated Sheffer sequence for f(t)=(e^t-1)/(e^t+1) (1) and have the generating function sum_(k=0)^infty(M_k(x))/(k!)t^k=((1+t)/(1-t))^x. ...
The nth Monica set M_n is defined as the set of composite numbers x for which n|[S(x)-S_p(x)], where x = a_0+a_1(10^1)+...+a_d(10^d) (1) = p_1p_2...p_m, (2) and S(x) = ...
1 ... 110|111|112|113|114|115|116 ... 199 Previous Next

...