TOPICS
Search

Search Results for ""


1101 - 1110 of 1981 for Power SumSearch Results
A formula for the Bell polynomial and Bell numbers. The general formula states that B_n(x)=e^(-x)sum_(k=0)^infty(k^n)/(k!)x^k, (1) where B_n(x) is a Bell polynomial (Roman ...
A doubly stochastic matrix is a matrix A=(a_(ij)) such that a_(ij)>=0 and sum_(i)a_(ij)=sum_(j)a_(ij)=1 is some field for all i and j. In other words, both the matrix itself ...
Let a distribution to be approximated be the distribution F_n of standardized sums Y_n=(sum_(i=1)^(n)(X_i-X^_))/(sqrt(sum_(i=1)^(n)sigma_X^2)). (1) In the Charlier series, ...
There are (at least) three types of Euler transforms (or transformations). The first is a set of transformations of hypergeometric functions, called Euler's hypergeometric ...
Let f(z) = z+a_1+a_2z^(-1)+a_3z^(-2)+... (1) = zsum_(n=0)^(infty)a_nz^(-n) (2) = zg(1/z) (3) be a Laurent polynomial with a_0=1. Then the Faber polynomial P_m(f) in f(z) of ...
Let n>=0 and alpha_1, alpha_2, ...be the positive roots of J_n(x)=0, where J_n(z) is a Bessel function of the first kind. An expansion of a function in the interval (0,1) in ...
Because the Legendre polynomials form a complete orthogonal system over the interval [-1,1] with respect to the weighting function w(x)=1, any function f(x) may be expanded ...
The solution to the differential equation [D^(2v)+alphaD^v+betaD^0]y(t)=0 (1) is y(t)={e_alpha(t)-e_beta(t) for alpha!=beta; ...
The Gauss-Seidel method (called Seidel's method by Jeffreys and Jeffreys 1988, p. 305) is a technique for solving the n equations of the linear system of equations Ax=b one ...
For even h, (1) (Nagell 1951, p. 176). Writing out symbolically, sum_(n=0)^h((-1)^nproduct_(k=0)^(n-1)(1-x^(h-k)))/(product_(k=1)^(n)(1-x^k))=product_(k=0)^(h/2-1)1-x^(2k+1), ...
1 ... 108|109|110|111|112|113|114 ... 199 Previous Next

...