Search Results for ""
91 - 100 of 765 for Poincare ConjectureSearch Results

In Note M, Burnside (1955) states, "The contrast that these results shew between groups of odd and of even order suggests inevitably that simple groups of odd order do not ...
If q_n is the nth prime such that M_(q_n) is a Mersenne prime, then q_n∼(3/2)^n. It was modified by Wagstaff (1983) to yield Wagstaff's conjecture, q_n∼(2^(e^(-gamma)))^n, ...
The conjecture due to Pollock (1850) that every number is the sum of at most five tetrahedral numbers (Dickson 2005, p. 23; incorrectly described as "pyramidal numbers" and ...
The conjecture that the equations for a Robbins algebra, commutativity, associativity, and the Robbins axiom !(!(x v y) v !(x v !y))=x, where !x denotes NOT and x v y denotes ...
The Sendov conjecture, proposed by Blagovest Sendov circa 1958, that for a polynomial f(z)=(z-r_1)(z-r_2)...(z-r_n) with n>=2 and each root r_k located inside the closed unit ...
Shephard's conjecture states that every convex polyhedron admits a self-unoverlapping unfolding (Shephard 1975). This question is still unsettled (Malkevitch), though most ...
Guy's conjecture, which has not yet been proven or disproven, states that the graph crossing number for a complete graph K_n is ...
The conjecture that, for any triangle, 8omega^3<ABC (1) where A, B, and C are the vertex angles of the triangle and omega is the Brocard angle. The Abi-Khuzam inequality ...
Let B={b_1,b_2,...} be an infinite Abelian semigroup with linear order b_1<b_2<... such that b_1 is the unit element and a<b implies ac<bc for a,b,c in B. Define a Möbius ...
The first few numbers whose abundance absolute values are odd squares (excluding the trivial cases of powers of 2) are 98, 2116, 4232, 49928, 80656, 140450, 550564, 729632, ...

...