TOPICS
Search

Search Results for ""


301 - 310 of 2438 for Partial differential equationSearch Results
An algebraic equation in n variables is an polynomial equation of the form f(x_1,x_2,...,x_n)=sum_(e_1,...,e_n)c_(e_1,e_2,...,e_n)x_1^(e_1)x_2^(e_2)...x_n^(e_n)=0, where the ...
A Thue equation is a Diophantine equation of the form A_nx^n+A_(n-1)x^(n-1)y+A_(n-2)x^(n-2)y^2+...+A_0y^n=M in terms of an irreducible polynomial of degree n>=3 having ...
A map u:M->N, between two compact Riemannian manifolds, is a harmonic map if it is a critical point for the energy functional int_M|du|^2dmu_M. The norm of the differential ...
The modular equation of degree n gives an algebraic connection of the form (K^'(l))/(K(l))=n(K^'(k))/(K(k)) (1) between the transcendental complete elliptic integrals of the ...
A Diophantine equation is an equation in which only integer solutions are allowed. Hilbert's 10th problem asked if an algorithm existed for determining whether an arbitrary ...
The equation x^p=1, where solutions zeta_k=e^(2piik/p) are the roots of unity sometimes called de Moivre numbers. Gauss showed that the cyclotomic equation can be reduced to ...
An equation of the form f(x,y,...)=0, where f contains a finite number of independent variables, known functions, and unknown functions which are to be solved for. Many ...
Nonhomogeneous matrix equations of the form Ax=b (1) can be solved by taking the matrix inverse to obtain x=A^(-1)b. (2) This equation will have a nontrivial solution iff the ...
The Diophantine equation x^n+y^n=z^n. The assertion that this equation has no nontrivial solutions for n>2 has a long and fascinating history and is known as Fermat's last ...
The Diophantine equation x_1^2+x_2^2+...+x_n^2=ax_1x_2...x_n which has no integer solutions for a>n.
1 ... 28|29|30|31|32|33|34 ... 244 Previous Next

...