TOPICS
Search

Search Results for ""


511 - 520 of 3715 for One-step equationsSearch Results
Given a set of linear equations {a_1x+b_1y+c_1z=d_1; a_2x+b_2y+c_2z=d_2; a_3x+b_3y+c_3z=d_3, (1) consider the determinant D=|a_1 b_1 c_1; a_2 b_2 c_2; a_3 b_3 c_3|. (2) Now ...
The ordinary differential equation y^('')-(a+bk^2sn^2x+qk^4sn^4x)y=0, where snx=sn(x,k) is a Jacobi elliptic function (Arscott 1981).
The ordinary differential equation (x^py^')^'+/-x^sigmay^n=0.
As shown by Morse and Feshbach (1953), the Helmholtz differential equation is separable in confocal paraboloidal coordinates.
In elliptic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(sinh^2u+sin^2v), h_z=1, and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving a Stäckel ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in oblate spheroidal coordinates.
The scale factors are h_u=h_v=sqrt(u^2+v^2), h_theta=uv and the separation functions are f_1(u)=u, f_2(v)=v, f_3(theta)=1, given a Stäckel determinant of S=u^2+v^2. The ...
In two-dimensional polar coordinates, the Helmholtz differential equation is 1/rpartial/(partialr)(r(partialF)/(partialr))+1/(r^2)(partial^2F)/(partialtheta^2)+k^2F=0. (1) ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in prolate spheroidal coordinates.
The second-order ordinary differential equation (d^2y)/(dx^2)+[theta_0+2sum_(n=1)^inftytheta_ncos(2nx)]y=0, (1) where theta_n are fixed constants. A general solution can be ...
1 ... 49|50|51|52|53|54|55 ... 372 Previous Next

...