TOPICS
Search

Search Results for ""


161 - 170 of 1565 for Omega constantSearch Results
The end of the last gap in the Lagrange spectrum, given by F=(2221564096+283748sqrt(462))/(491993569)=4.5278295661... (OEIS A118472). Real numbers greater than F are members ...
Given a positive integer m>1, let its prime factorization be written m=p_1^(a_1)p_2^(a_2)p_3^(a_3)...p_k^(a_k). (1) Define the functions h(n) and H(n) by h(1)=1, H(1)=1, and ...
The clique polynomial C_G(x) for the graph G is defined as the polynomial C_G(x)=1+sum_(k=1)^(omega(G))c_kx^k, (1) where omega(G) is the clique number of G, the coefficient ...
An elliptic function can be characterized by its real and imaginary half-periods omega_1 and omega_2 (Whittaker and Watson 1990, p. 428), sometimes also denoted ...
A particle P is said to be undergoing uniform circular motion if its radius vector in appropriate coordinates has the form (x(t),y(t),0), where x(t) = Rcos(omegat) (1) y(t) = ...
The sum of reciprocal multifactorials can be given in closed form by the beautiful formula m(n) = sum_(n=0)^(infty)1/(n!...!_()_(k)) (1) = ...
Let a piecewise smooth function f with only finitely many discontinuities (which are all jumps) be defined on [-pi,pi] with Fourier series a_k = 1/piint_(-pi)^pif(t)cos(kt)dt ...
Closed forms are known for the sums of reciprocals of even-indexed Lucas numbers P_L^((e)) = sum_(n=1)^(infty)1/(L_(2n)) (1) = sum_(n=1)^(infty)1/(phi^(2n)+phi^(-2n)) (2) = ...
Let Pi be a permutation of n elements, and let alpha_i be the number of permutation cycles of length i in this permutation. Picking Pi at random, it turns out that ...
Prellberg (2001) noted that the limit c=lim_(n->infty)(T_n)/(B_nexp{1/2[W(n)]^2})=2.2394331040... (OEIS A143307) exists, where T_n is a Takeuchi number, B_n is a Bell number, ...
1 ... 14|15|16|17|18|19|20 ... 157 Previous Next

...