TOPICS
Search

Search Results for ""


131 - 140 of 5121 for Odd/even/prime/composite/square numbersSearch Results
A double factorial prime is a prime number of the form n!!+/-1, where n!! is a double factorial. n!!-1 is prime for n=3, 4, 6, 8, 16, 26, 64, 82, 90, 118, 194, 214, 728, ... ...
The odd part Od(n) of a positive integer n is defined by Od(n)=n/(2^(b(n))), where b(n) is the exponent of the exact power of 2 dividing n. Od(n) is therefore the product of ...
A Pierpont prime is a prime number of the form p=2^k·3^l+1. The first few Pierpont primes are 2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, ... ...
A Thâbit ibn Kurrah number, sometimes called a 321-number, is a number of the form K_n=3·2^n-1. The first few for n=0, 1, ... are 2, 5, 11, 23, 47, 95, 191, 383, 767, ... ...
The Lucas-Lehmer test is an efficient deterministic primality test for determining if a Mersenne number M_n is prime. Since it is known that Mersenne numbers can only be ...
A Thâbit ibn Kurrah prime, sometimes called a 321-prime, is a Thâbit ibn Kurrah number (i.e., a number of the form 3·2^n-1 for nonnegative integer n) that is prime. The ...
A number which is simultaneously a pentagonal number P_n and a square number S_m. Such numbers exist when 1/2n(3n-1)=m^2. (1) Completing the square gives ...
There are two definitions of the supersingular primes: one group-theoretic, and the other number-theoretic. Group-theoretically, let Gamma_0(N) be the modular group Gamma0, ...
A number which is simultaneously a heptagonal number H_n and square number S_m. Such numbers exist when 1/2n(5n-3)=m^2. (1) Completing the square and rearranging gives ...
Let H_n denote the nth hexagonal number and S_m the mth square number, then a number which is both hexagonal and square satisfies the equation H_n=S_m, or n(2n-1)=m^2. (1) ...
1 ... 11|12|13|14|15|16|17 ... 513 Previous Next

...