Search Results for ""
621 - 630 of 3164 for OTHER FUNCTIONSSearch Results
The m+1 ellipsoidal harmonics when kappa_1, kappa_2, and kappa_3 are given can be arranged in such a way that the rth function has r-1 zeros between -a^2 and -b^2 and the ...
The triangle coefficient is function of three variables written Delta(abc)=Delta(a,b,c) and defined by Delta(abc)=((a+b-c)!(a-b+c)!(-a+b+c)!)/((a+b+c+1)!), (Shore and Menzel ...
Let f_n(z) be a sequence of functions, each regular in a region D, let |f_n(z)|<=M for every n and z in D, and let f_n(z) tend to a limit as n->infty at a set of points ...
The transform inverting the sequence g(n)=sum_(d|n)f(d) (1) into f(n)=sum_(d|n)mu(d)g(n/d), (2) where the sums are over all possible integers d that divide n and mu(d) is the ...
Debye's asymptotic representation is an asymptotic expansion for a Hankel function of the first kind with nu approx x. For 1-nu/x>epsilon, nu/x=sinalpha, ...
The symbol defined by (v,n) = (2^(-2n){(4v^2-1)(4v^2-3^2)...[4v^2-(2n-1)^2]})/(n!) (1) = ((-1)^ncos(piv)Gamma(1/2+n-v)Gamma(1/2+n+v))/(pin!), (2) where Gamma(z) is the gamma ...
There are (at least) two equations known as Sommerfeld's formula. The first is J_nu(z)=1/(2pi)int_(-eta+iinfty)^(2pi-eta+iinfty)e^(izcost)e^(inu(t-pi/2))dt, where J_nu(z) is ...
Lambda_0(phi|m)=(F(phi|1-m))/(K(1-m))+2/piK(m)Z(phi|1-m), where phi is the Jacobi amplitude, m is the parameter, Z is the Jacobi zeta function, and F(phi|m^') and K(m) are ...
The complete elliptic integral of the second kind, illustrated above as a function of k, is defined by E(k) = E(1/2pi,k) (1) = ...
The problem of finding the connection between a continuous function f on the boundary partialR of a region R with a harmonic function taking on the value f on partialR. In ...
...