Search Results for ""
571 - 580 of 3164 for OTHER FUNCTIONSSearch Results
By analogy with the geometric centroid, the centroid of an arbitrary function f(x) is defined as <x>=(intxf(x)dx)/(intf(x)dx), (1) where the integrals are taken over the ...
The inverse cotangent is the multivalued function cot^(-1)z (Zwillinger 1995, p. 465), also denoted arccotz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. ...
The inverse sine is the multivalued function sin^(-1)z (Zwillinger 1995, p. 465), also denoted arcsinz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; ...
For R[mu+nu]>1, int_(-pi/2)^(pi/2)cos^(mu+nu-2)thetae^(itheta(mu-nu+2xi))dtheta=(piGamma(mu+nu-1))/(2^(mu+nu-2)Gamma(mu+xi)Gamma(nu-xi)), where Gamma(z) is the gamma function.
Given F_1(x,y,z,u,v,w) = 0 (1) F_2(x,y,z,u,v,w) = 0 (2) F_3(x,y,z,u,v,w) = 0, (3) if the determinantof the Jacobian |JF(u,v,w)|=|(partial(F_1,F_2,F_3))/(partial(u,v,w))|!=0, ...
sum_(k=0)^(infty)[((m)_k)/(k!)]^3 = 1+(m/1)^3+[(m(m+1))/(1·2)]^3+... (1) = (Gamma(1-3/2m))/([Gamma(1-1/2m)]^3)cos(1/2mpi), (2) where (m)_k is a Pochhammer symbol and Gamma(z) ...
The rectifiable sets include the image of any Lipschitz function f from planar domains into R^3. The full set is obtained by allowing arbitrary measurable subsets of ...
The function psi(x)={x(1-(x^2)/(c^2))^2 for |x|<c; 0 for |x|>c (1) sometimes used in robust estimation. It has a minimum at x=-c/sqrt(5) and a maximum at x=c/sqrt(5), where ...
Let H_nu^((iota))(x) be a Hankel function of the first or second kind, let x,nu>0, and define w=sqrt((x/nu)^2-1). Then ...
The rising factorial x^((n)), sometimes also denoted <x>_n (Comtet 1974, p. 6) or x^(n^_) (Graham et al. 1994, p. 48), is defined by x^((n))=x(x+1)...(x+n-1). (1) This ...
...