Search Results for ""
321 - 330 of 3164 for OTHER FUNCTIONSSearch Results
A real function is said to be analytic if it possesses derivatives of all orders and agrees with its Taylor series in a neighborhood of every point.
The two integrals involving Bessel functions of the first kind given by (alpha^2-beta^2)intxJ_n(alphax)J_n(betax)dx ...
A C^infty function is a function that is differentiable for all degrees of differentiation. For instance, f(x)=e^(2x) (left figure above) is C^infty because its nth ...
A function f:X->R is measurable if, for every real number a, the set {x in X:f(x)>a} is measurable. When X=R with Lebesgue measure, or more generally any Borel measure, then ...
If (1-z)^(alpha+beta-gamma-1/2)_2F_1(2alpha,2beta;2gamma;z)=sum_(n=0)^inftya_nz^n, (1) where _2F_1(a,b;c;z) is a hypergeometric function, then (2) where (a)_n is a Pochhammer ...
The function [x] which gives the smallest integer >=x, shown as the thick curve in the above plot. Schroeder (1991) calls the ceiling function symbols the "gallows" because ...
The inverse function of the logarithm, defined such that log_b(antilog_bz)=z=antilog_b(log_bz). The antilogarithm in base b of z is therefore b^z.
rho_(2s)(n)=(pi^s)/(Gamma(s))n^(s-1)sum_(p,q)((S_(p,q))/q)^(2s)e^(2nppii/q), where S_(p,q) is a Gaussian sum, and Gamma(s) is the gamma function.
The apodization function A(x)=(1-(x^2)/(a^2))^2. Its full width at half maximum is sqrt(4-2sqrt(2))a. Its instrument function is ...
The interesting function defined by the definite integral G(x)=int_0^xsin(tsint)dt, illustrated above (Glasser 1990). The integral cannot be done in closed form, but has a ...
...