TOPICS
Search

Search Results for ""


191 - 200 of 3164 for OTHER FUNCTIONSSearch Results
The Chebyshev integral is given by intx^p(1-x)^qdx=B(x;1+p,1+q), where B(x;a,b) is an incomplete beta function.
An expansion based on the roots of x^(-n)[xJ_n^'(x)+HJ_n(x)]=0, where J_n(x) is a Bessel function of the first kind, is called a Dini expansion.
Legendre and Whittaker and Watson's (1990) term for the beta integral int_0^1x^p(1-x)^qdx, whose solution is the beta function B(p+1,q+1).
int_0^inftye^(-ax)J_0(bx)dx=1/(sqrt(a^2+b^2)), where J_0(z) is the zeroth order Bessel function of the first kind.
rho_n(nu,x)=((1+nu-n)_n)/(sqrt(n!x^n))_1F_1(-n;1+nu-n;x), where (a)_n is a Pochhammer symbol and _1F_1(a;b;z) is a confluent hypergeometric function of the first kind.
J_m(x)=(x^m)/(2^(m-1)sqrt(pi)Gamma(m+1/2))int_0^1cos(xt)(1-t^2)^(m-1/2)dt, where J_m(x) is a Bessel function of the first kind and Gamma(z) is the gamma function. Hankel's ...
Let J_nu(z) be a Bessel function of the first kind, N_nu(z) a Bessel function of the second kind, and j_(nu,n)(z) the zeros of z^(-nu)J_nu(z) in order of ascending real part. ...
The integral representation of ln[Gamma(z)] by lnGamma(z) = int_1^zpsi_0(z^')dz^' (1) = int_0^infty[(z-1)-(1-e^(-(z-1)t))/(1-e^(-t))](e^(-t))/tdt, (2) where lnGamma(z) is the ...
An apodization function (also called a tapering function or window function) is a function used to smoothly bring a sampled signal down to zero at the edges of the sampled ...
In the theory of special functions, a class of functions is said to be "of the third kind" if it is similar to but distinct from previously defined functions already defined ...
1 ... 17|18|19|20|21|22|23 ... 317 Previous Next

...