Search Results for ""
431 - 440 of 983 for Normalize]]><![ CDATA[d VectorSearch Results
![](/common/images/search/spacer.gif)
Let a line in three dimensions be specified by two points x_1=(x_1,y_1,z_1) and x_2=(x_2,y_2,z_2) lying on it, so a vector along the line is given by v=[x_1+(x_2-x_1)t; ...
Let X be a normed space and X^(**)=(X^*)^* denote the second dual vector space of X. The canonical map x|->x^^ defined by x^^(f)=f(x),f in X^* gives an isometric linear ...
Let M be a regular surface with v_(p),w_(p) points in the tangent space M_(p) of M. For M in R^3, the second fundamental form is the symmetric bilinear form on the tangent ...
Abstractly, the tensor direct product is the same as the vector space tensor product. However, it reflects an approach toward calculation using coordinates, and indices in ...
The vector Laplacian can be generalized to yield the tensor Laplacian A_(munu;lambda)^(;lambda) = (g^(lambdakappa)A_(munu;lambda))_(;kappa) (1) = ...
A pairing function is a function that reversibly maps Z^*×Z^* onto Z^*, where Z^*={0,1,2,...} denotes nonnegative integers. Pairing functions arise naturally in the ...
An n×n complex matrix A is called positive definite if R[x^*Ax]>0 (1) for all nonzero complex vectors x in C^n, where x^* denotes the conjugate transpose of the vector x. In ...
A special case of Hölder's sum inequality with p=q=2, (sum_(k=1)^na_kb_k)^2<=(sum_(k=1)^na_k^2)(sum_(k=1)^nb_k^2), (1) where equality holds for a_k=cb_k. The inequality is ...
Direct sums are defined for a number of different sorts of mathematical objects, including subspaces, matrices, modules, and groups. The matrix direct sum is defined by ...
A pair of elements (p_i,p_j) is called an inversion in a permutation p if i>j and p_i<p_j (Skiena 1990, p. 27; Pemmaraju and Skiena 2003, p. 69). For example, in the ...
![](/common/images/search/spacer.gif)
...