TOPICS
Search

Search Results for ""


1631 - 1640 of 4142 for Multiply whole numbers and integersSearch Results
Consider a game where everyone in a classroom picks a number between 0 and 100. The person closest to half the average wins. Obviously, picking a number over 50 would be ...
Relationships between the number of singularities of plane algebraic curves. Given a plane curve, m = n(n-1)-2delta-3kappa (1) n = m(m-1)-2tau-3iota (2) iota = ...
A pairing function is a function that reversibly maps Z^*×Z^* onto Z^*, where Z^*={0,1,2,...} denotes nonnegative integers. Pairing functions arise naturally in the ...
A recurrence equation (also called a difference equation) is the discrete analog of a differential equation. A difference equation involves an integer function f(n) in a form ...
Let Sigma(n)=sum_(i=1)^np_i (1) be the sum of the first n primes (i.e., the sum analog of the primorial function). The first few terms are 2, 5, 10, 17, 28, 41, 58, 77, ... ...
The Kronecker symbol is an extension of the Jacobi symbol (n/m) to all integers. It is variously written as (n/m) or (n/m) (Cohn 1980; Weiss 1998, p. 236) or (n|m) (Dickson ...
A number that is "close" to (but not equal to) zero may be called an almost zero. In contrast, a number or expression that is equal to zero is said to be identically zero. ...
Let {A_n}_(n=0)^infty be a sequence of events occurring with a certain probability distribution, and let A be the event consisting of the occurrence of a finite number of ...
The least number of unknotted arcs lying above the plane in any projection. The knot 05-002 has bridge number 2. Such knots are called 2-bridge knots. There is a one-to-one ...
A generalization of Poncelet's continuity principle made by H. Schubert in 1874-1879. The conservation of number principle asserts that the number of solutions of any ...
1 ... 161|162|163|164|165|166|167 ... 415 Previous Next

...