Search Results for ""
501 - 510 of 1564 for Monotonic SequenceSearch Results
![](/common/images/search/spacer.gif)
The odd part Od(n) of a positive integer n is defined by Od(n)=n/(2^(b(n))), where b(n) is the exponent of the exact power of 2 dividing n. Od(n) is therefore the product of ...
An odd power is a number of the form m^n for m>0 an integer and n a positive odd integer. The first few odd powers are 1, 8, 27, 32, 64, 125, 128, 216, 243, 343, 512, ... ...
The paper folding constant is the constant given by P = sum_(k=0)^(infty)1/(2^(2^k))(1-1/(2^(2^(k+2))))^(-1) (1) = sum_(k=0)^(infty)(8^(2^k))/(2^(2^(k+2))-1) (2) = ...
Given a sequence {a_k}_(k=1)^n, a partial sum of the first N terms is given by S_N=sum_(k=1)^Na_k.
The Pell constant is the infinite product P = 1-product_(k=0)^(infty)(1-1/(2^(2k+1))) (1) = 1-(1/2;1/4)_infty (2) = 0.58057755820489... (3) (OEIS A141848), where (a,q)_infty ...
The pentanacci constant is the limiting ratio of adjacent pentanacci numbers. It is the algebraic number P = (x^5-x^4-x^3-x^2-x-1)_1 (1) = 1.96594823... (2) (OEIS A103814), ...
A figurate number which is given by Ptop_n=1/4Te_n(n+3)=1/(24)n(n+1)(n+2)(n+3), where Te_n is the nth tetrahedral number. The first few pentatope numbers are 1, 5, 15, 35, ...
Consider n intersecting ellipses. The maximal number of regions into which these divide the plane are N(n)=2n^2-2n+2=2(n^2-n+1), giving values for n=1, 2, ... of 2, 6, 14, ...
The maximal number of regions into which n lines divide a plane are N(n)=1/2(n^2+n+2) which, for n=1, 2, ... gives 2, 4, 7, 11, 16, 22, ... (OEIS A000124), the same maximal ...
A polybe is a polyform formed from a polycubes by removing of half of each cube such that at least half of the original join between cubes is retained. The numbers of polybes ...
![](/common/images/search/spacer.gif)
...