Search Results for ""
491 - 500 of 1564 for Monotonic SequenceSearch Results
A group G is nilpotent if the upper central sequence 1=Z_0<=Z_1<=Z_2<=...<=Z_n<=... of the group terminates with Z_n=G for some n. Nilpotent groups have the property that ...
The number of nonassociative n-products with k elements preceding the rightmost left parameter is F(n,k) = F(n-1,k)+F(n-1,k-1) (1) = (n+k-2; k)-(n+k-1; k-1), (2) where (n; k) ...
A positive value of n for which x-phi(x)=n has no solution, where phi(x) is the totient function. The first few are 10, 26, 34, 50, 52, ... (OEIS A005278).
A positive even value of n for which phi(x)=n, where phi(x) is the totient function, has no solution. The first few are 14, 26, 34, 38, 50, ... (OEIS A005277).
A normal series of a group G is a finite sequence (A_0,...,A_r) of normal subgroups such that I=A_0<|A_1<|...<|A_r=G.
A constant appearing in formulas for the efficiency of the Euclidean algorithm, B = (12ln2)/(pi^2)[-1/2+6/(pi^2)zeta^'(2)]+C-1/2 (1) = 0.06535142... (2) (OEIS A143304), where ...
A null function delta^0(x) satisfies int_a^bdelta^0(x)dx=0 (1) for all a,b, so int_(-infty)^infty|delta^0(x)|dx=0. (2) Like a delta function, they satisfy delta^0(x)={0 x!=0; ...
It is possible to construct simple functions which produce growing patterns. For example, the Baxter-Hickerson function f(n)=1/3(2·10^(5n)-10^(4n)+2·10^(3n)+10^(2n)+10^n+1) ...
Place 2n balls in a bag and number them 1 to 2n, then pick half of them at random. The number of different possible sums for n=1, 2, 3, ... are then 2, 5, 10, 17, 26, ... ...
A polygonal number of the form O_n=n(3n-2). The first few are 1, 8, 21, 40, 65, 96, 133, 176, ... (OEIS A000567). The generating function for the octagonal numbers is ...
...
View search results from all Wolfram sites (11155 matches)

