TOPICS
Search

Search Results for ""


61 - 70 of 284 for Minkowskis InequalitySearch Results
Given T an unbiased estimator of theta so that <T>=theta. Then var(T)>=1/(Nint_(-infty)^infty[(partial(lnf))/(partialtheta)]^2fdx), where var is the variance.
For positive numbers a and b with a!=b, (a+b)/2>(b-a)/(lnb-lna)>sqrt(ab).
Relates invariants of a curve defined over the integers. If this inequality were proven true, then Fermat's last theorem would follow for sufficiently large exponents. ...
A balanced incomplete block design (v, k, lambda, r, b) exists only for b>=v (or, equivalently, r>=k).
Let y_n be a complex number for 1<=n<=N and let y_n=0 if n<1 or n>N. Then (Montgomery 2001).
Let E be the largest and e the smallest power of l in the HOMFLY polynomial of an oriented link, and i be the braid index. Then the Morton-Franks-Williams inequality holds, ...
If p>1, then Minkowski's integral inequality states that Similarly, if p>1 and a_k, b_k>0, then Minkowski's sum inequality states that [sum_(k=1)^n|a_k+b_k|^p]^(1/p) ...
The Minkowski measure of a bounded, closed set is the same as its Lebesgue measure.
The collection of twistors in Minkowski space that forms a four-dimensional complex vector space.
Minkowski space is a four-dimensional space possessing a Minkowski metric, i.e., a metric tensor having the form dtau^2=-(dx^0)^2+(dx^1)^2+(dx^2)^2+(dx^3)^2. Alternatively ...
1 ... 4|5|6|7|8|9|10 ... 29 Previous Next

...